The frequency response of a defocused optical system
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The response of a defocused aberration-free optical system to line-frequencies in the object
is studied analytically. Curves are given showing the response as a function of line-frequency
for a range of values of defect of focus. A comparison is made with the results to be expected
from geometrical optics. A tolerance for defect of focus is obtained, which accords well with
published experimental results. Both circular and rectangular apertures are considered.

1. GENERAL FORMULAE

It will be convenient to recall first the notation of an earlier communication (Hopkins
1953). Let a ray from the axial point, O, of the object plane of an optical system
(figure 1) be inclined at an angle « to the optical axis, and let it intersect the reference
sphere in the object space at a height 4. The reference sphere has its centre at O
and is of such radius that it passes through £, the axial point of the entrance pupil.
This ray emerges from the system and proceeds to the axial image point 0’, making
an angle o’ with the optical axis and meeting the reference sphere in the image space
at a height 2’. If any other ray has rectangular co-ordinates (a,b), (a’,b") at the
object and image reference spheres respectively, the fractional co-ordinates

et Vi m
denote the point of the pupil traversed by the ray. In a system with a circular
aperture, it is convenient to choose the ray  to pass through a point at the edge of
the diaphragm, so that z2+y2 = 1 denotes the limiting aperture. Points in the
object plane are then denoted by the rectangular co-ordinates

w = k(nsinx)§, v=k(nsina)y, (2)

where & = 27/A, n is the refractive index, and (£,%) the geometrical co-ordinate
distances of the point. Similar expressions, with appropriate primes, define rect-
angular co-ordinates for the image plane.

Let that wavefront, associated with a disturbance originating at O, which lies
in the object reference sphere have unit amplitude and zero phase. The part of the
wavefront that lies outside the circle 22+ y* = 1 is not transmitted by the optical
8ystem; moreover, for each point within the circle, there will be, in general, some
loss of light and aberrational effects. The pupil function f(z,y) takes account of
.both these factors by specifying the disturbance on the reference sphere in the

tmage space. The complex amplitude in the image of a point source, situated at
(0,0) in the object plane, is then given by the Fourier transform

F(u',v") = %,J-J‘j: [z, y)expi(u'z +v'y) dzdy, (3)
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in which the factor 27 implies a convenient choice of amplitude. Infinite lip
may be employed since f(z, y) is zero outside the region 22+ — 1. The intensity
the diffraction image of the point source is given by i

G/, v') = | F(w,v') |2,
but it is, of course, rarely known explicitly.

Z, y

v

Fieure 1. 0, 0, object and image panels; B, E’, entrance and exit pupils.

We shall assume that the pupil is isoplanatic, which requires that the diffractig
image of a point source situated at the point (u, v) of the object plane be given by
G(u’ —u,v'—v). In practice, this requires that the aberration of the optical system
shall be constant to a small fraction of a wavelength for all points in a region of th
geometrical image that is large compared with the extent of the diffraction im Age
of a point source formed by the system. This is clearly satisfied by a system whichj
free from aberration and merely suffers from defective focusing. This is the case
be considered here. 4

In incoherent light the distribution of intensity in the image plane is found b
integrating the intensity distributions in the diffraction images associated
each point in the object. Thus, if B(u, v) is the intensity at (u, v) in the object plang
the intensity at the point («’,’) in the image is obtained from the formula E

+ @
B(u',v') = Qi_r,”' B(u,v) G(u' —u,v' —v) dudy,

the factor 1/27 being inserted for convenience. Following Duffieux (1946), we
apply the convolution theorem (Titchmarsh 1937) to (5) and obtain
b'(s,t) = g(s, t) b(s, 1),

lower-case letters denoting the inverse Fourier transforms of the functions denote
by the corresponding capital letters. A constant intensity in the object plane
only the zero frequency b(0, 0) in its Fourier spectrum, and this gives rise to a col
stant intensity in the image. It is for this reason convenient to replace g(s, t) by th
normalized transmission factor (response) defined by

D('gs t] _— gg((g:(t))) s

the constant g(0,0) implying merely a change in photometric units. With
normalization, D(0,0) = 1.
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If one knows the response function D(s,) the image distribution corresponding
o a0y object may be calculated, although numerical methods have usually to be
-ed. If the transparency of the pupil is uniform, and the wavefront aberration

loy
z?&e optical system is denoted by W(z,y), the pupil function has the form

TSI

fl@,y) = exp{ikW(z,y)} (2*+y2< 1),}

= {) (2 +y2> 1), (8)

pecause, W (x,y) being the optical distance between the reference sphere and the
emergent wavefront, kW (z,y) measures the phase advance at the point (z,y) of
the reference sphere relative to that at the origin (0, 0). Now the inverse transform
gls,t) i defined by

+ o
g(s,t) = %Jf_m | F(u',v') |2exp{—i(u's +v't)} du'dv’

or, applying Parseval’s theorem (Titchmarsh 1937) and using * to denote a complex
conjugate, 1 4+
g(s,1) =§T”‘ f@.y) [*(x—s,y—1t)dzdy,

and therefore, by a shift of origin,

1 [+
6.0 =5 | He+ doy+ 40 fro -5,y 40 dzay. (0

It is this integral, with f(z,y) of the form (8), which has to be evaluated to find the
response function of an optical system suffering from aberration or a defect of focus.

Let the suffix zero be used to denote all variables and functions in (9) before a
rotation of axes. If we now consider two unit circles (figure 2) in the (z,,¥,) plane
centred respectively on the points ( + 4s,, + 3f,), the integrand in (9) vanishes out-
side the region common to these circles, because f(x,,¥,) = f*(2y %) = 0 for
%+75> 1. If the co-ordinate axes (,,,) are replaced by axes (z,y), in which the
z-axis passes through the points ( + 4s, + ), the origin being at the mid-point of
their join, the formula (9) transforms to

1 s
066,0) = 50 | " fw+ do.3) £ do.9) dacly, (10)

Where s = /(s +#3), and f(x,y) derives from fy(x,, o) by the substitutions

X = &, COS I + 1, Sin ;&,}

(11)
Y = YpCos Y —x,sinys,

the angle 1 being tan—! (ty/s,). There is, in consequence, no loss of generality if we
confine attention to objects in the form of line structures, that is, objects in which
the intensity is constant along the lines v = constant and varies only with . For
the above considerations show that the transmission factor (response) of the optical
System for the frequency pair (s, f,) is precisely the same as that for the single
ﬁ'equency (s,0), providing the pupil is rotated through an angle y. Alternatively,
We may interpret the result as identifying the response for the frequency pair
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(89, to) With that for the frequency (s) of a line structure whose direction is inclineq
at an angle ¥ to the meridian section of the pupil. This result, which applies to any
form of pupil function, not only simplifies the algebra in the analytical evaluatiop
of the response function in any given case, it also implies the important corollary
that all the information about the image-forming properties of any system may

7
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Ficure 2. Region of integration for the frequency pair (s, ).
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Fraure 3. The measure of defect of focus.

be obtained in practice using only line structures and scanning slits. The photo-
metric advantages deriving from this fact are obvious. Moreover, the result allows
one to think in terms of the more easily visualized case of a unidimensional object.

To study the problem of aberration-free image formation in the presence of a
defect of focus, we use a pupil function of the form

f(@,y) = expikwy(a® +y2)} (2% +y*< 1)’} (12)

=0 (@*+y*> 1),

the coefficient w,, measuring the defect of focus by the optical path length of the
intercept between the emergent wavefront and a reference sphere centred on the
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axial point O’ of the out-of-focus image plane (figure 3). If 2" = Oy0’, where Oy is
ip the true focal plane, the defect of focus coefficient is given by

Wy = 0’ sin?a’d7’, (13)

which is the customary formula for a longitudinal focal shift (Hopkins 1950).

Because of rotational symmetry in the present problem, we may simply treat the
wase of a line structure with direction parallel to the »-axis, and ignore the rotation
of the pupil function, because 23 + y2 transforms into 2% + y2. B(u), B'(v’) will denote
the object and image functions, their inverse transforms being defined by

1 e ;
b(s) = \/(_27_?5J‘_m B(u)exp (—ius) du, (14)
and the corresponding formula with primes. The normalized response is then
denoted by

9(0,0)’
and the distribution of intensity in the image plane is expressed by the formula

B'(u') = ﬁfl} D(s)b(s) exp (iu's) ds, (186)
which is correctly normalized, since B(u) = 1 gives an image B'(x) = 1, the inverse
transform in this case being b(s) = /(2m) 8(s), where d(s) is a delta function.

To relate the frequency variable s to the corresponding number of lines per unit
length, we note that the length of one period w, is such that u,s = 27. If R, R’ are
the number of lines per unit length measured in the object and image respectively
(so that R = 1/&,, R’ = 1/£, &, &; being the pattern sizes in these planes), the
definition (2) gives

£ = 2—irr('n,s;inoc)l = Eﬁ(n’sina’)i
3 T R A R

The connexion between s and R, R’ is thus

o S T

8 = — = ——— R, (17)
nsina n'sin o

and, if A is measured in millimetres (say), R and R’ denote the number of lines per
millimetre, as measured in the object and image planes respectively.

2, THE EVALUATION OF THE RESPONSE FUNCTION D(s)

The integrand in (10) is zero outside the region common to the two unit circles
tentred on the points ( + 4s,0). Within this region, which is indicated in figure 4,
the integrand has the form (according to (12)),

exp (ikwy) {[(x + $8)* + 2] - [(¥ — $5)* + ¥*]} = exp (iax) (18)

for the case of a defect of focus, where @ = 2kwsy, | 8| = 47wy, | ¢ |/A. It is convenient
t0 use the modulus of s here, since g( —s, 0) = g(s, 0), the region of integration of (18)
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being symmetrical about the y-axis. When s = 0 this region is simply the unit circl
centred on the origin, so that g(0,0) = 7. The normalized response function (15)
is thus given by the integral

D(s) = ;r-U. exp (iax) dedy, (19)

the symbol s being used to denote the region of integration. Because of the Sym-
metry of this region, the integral reduces to

4 (V-G
D(s) = — : sina{y(1—y% —4%|s|}dy.
y
/

(+35,0)

Ficure 4. Region of integration for the frequency s.

If the substitution y = sin 6 is now made, the integrand may be expanded to give
4 (A 4 . A
D(s) = —cosia|s |f sin (acosf) cosdf ——sin ja | s |J cos (@ cos 6) cos #d4.
ma 0 ma 0
The geometrical significance of the limit # = cos—*} | s | is indicated in the diagram,

Using the expansions of sin (@ cos @) and cos (@ cos#) in terms of Bessel functions,
the above two integrals are easily evaluated, and give the result

D(s) = = cos ba s | {84(a) + ksin 2B (a) — () — } sin 4B((a)~ Jya) + ..}

— - sinda| s {sin fJy(a) ()~ sin 3B/(a) — (@)

47

+§8in 54(Jy(a) — Jy(a)) — ...} ( = Awm[s],ﬂ=cos—11}|s]), (20)

with an obvious grouping of terms. These series are convergent, and are in a con-
venient form for numerical evaluation,

If we let wy,— 0, the response function is easily shown to tend to the form

Dyfs) = (2B ~sin2p) (@)
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which is the known result for the in-focus image. It is of interest to note that
0 £

0
200, = |50 _ = (22
G
and 20w _=|5Pa| =0 (23)

which are particular cases of a more general result. These results are most easily
obtained by considering the series expansions of (20) about the points s = 0, s = 2.
Moreover, D(0) =1 and D(s) = 0 for ¢>2, for in the latter case the region of
integration vanishes. From (20) it may be seen that D(s) is an even function of wy,,.
Hence the response of the lens is identical in planes at equal distances on the two
sides of the focus, and the images of any object formed by an aberration-free lens
are therefore symmetrical about the true focal plane.

The intensity B(u) at any point in the object plane is necessarily real. In con-
sequence the transform (14) satisfies the condition 6(—s) = b*(s). Moreover, an
immediate consequence of the definitions (10) and (15) is that D(—s) = D*(s).
To find the frequency component b’(s) of the image intensity B’(u’), we multiply
the frequency component b(s) of the object by its transmission factor D(s), so that
b(s) = D(s).b(s). It follows that b'(—s) = b*(s), and hence B'(«’) is always real—
as is, of course, necessary. If we write b(s) in terms of a modulus and argument,
b(s) = f(s) exp {ipp(s)}, and similarly

D(s) = T'(s) exp {if(s)}, (24)

the object intensity function may be written

By = [2 [ " Bleycos s+ o)} s,

and the image is then described by

B'(u') = J %J: T(s) B(s) cos {w's + ¢(s) + 0(s)} ds.

Comparison of these expressions shows that the component of frequency s has its
amplitude modulated by a factor 7'(s), and is phase-shifted relative to the geo-
metrical image by an amount u’ = #(s)/s. For a symmetrical pupil function f(z,y),
D(s) is wholly real. There is then no phase-shift, but negative values of 1)(s) denote
a reversal of phase, which can, of course, be regarded as a phase shift equal to
one-half the pattern size corresponding to the frequency s.

The response curves have been calculated for defects of focus corresponding to
Wy = (n/m) A, n having values between 0 and 60. The largest value, n = 60, denotes
a defect of focus wy, = + 19-1A. For a system of numerical aperture sina’ = 0-10,
With ' = 1, this corresponds to 8z’ = + 1-9mm, if A = 0-5x.

A marked feature of these curves, shown in figure 5, is the very rapid deterioration
of the response of the lens for higher frequencies with the introduction of small
amounts of defect of focus in excess of A/m. This is well illustrated in figure 6, in
Which the limiting frequency for which D(s) > 0 is shown as a function of the defect

7 Vol. 231. A.
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of focus. Beyond the point w,, = 3A the effect of increasing defect of focus on the
bandwidth transmitted by the lens is, by comparison, very slow. For this value,
Wyy = 3A, the limiting value of s is equal to 0-10. If sina’ = 010, A = 0:-5p, n’ = 1.

S
0-8
0-6
0-4

+0-2

D(s)

0-6

0-4

+0-2

~0-2 | |
" 0-06

Fraure 5. Out-of-foeus response curves. The curve numbers
relate to a defect of focus w,,=nA/m.

(that is an F'[5 objective) the number of lines per millimetre R’ corresponding t0
any line frequency s is R’ = 200s, as may be seen from (17). Thus s = 0-10 corre-
sponds in this case to 20 lines/mm in the image.



The frequency response of a defocused optical system 99

Beyond the transmitted bandwidth, for larger values of wy,, there are side bands
showing reversal of contrast, for which the maximum contrast transmission factor
7(s) increases numerically from 7 Y%, for wyg = (4/m) A, up to 16 %, for w,y = (60/7) A.
This accounts for the known spurious resolution which is obtained with a well-
corrected lens used with a large defect of focus. There are successive sidebands
beyond the first, showing alternately correct and reversed contrast. It is shown
pelow that, according to geometrical optics, the maximum numerical values of
7(s) are equal to the turning values of 2J;(a)/a, a being the quantity defined in (20).

2'"“ T T T T =
|

%
‘ «% 010 T ,

§

|
0-5—\

limiting value of s for D(s)>0
>

| |
0 2:5 50 10 15 20

wyy (wavelengths)

Fieure 6. Bandwidth as a function of defect of focus. The points O
are calculated on the basis of geometrical optics.

3. COMPARISON WITH GEOMETRICAL OPTICS

If the object consists of a single point source situated on the axis, we may write
B(u,v) = 2nd(u,v), d(u, v) being a delta function. This has a Fourier spectrum
b(s,t) = 1. Denoting by D(s, ) the transmission factor for any chosen plane of focus,
the intensity in the point source diffraction image in that plane is expressed by

+
B'(w',v') = 517; j J_ D(s,t)exp {i(u's +v't)} dsdt,

inversion of which gives
+w
Ds,t) = %J.f B'(w',v')exp{—i(w's+v't)}du'dv’, (25)

showing that D(s, ?) is the inverse Fourier transform of the intensity distribution in
the point source image. If this latter is calculated on the basis of geometrical optics,
We are able to use (25) to find the response function to be expected according to
geometrical optics,

72
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For an aberration-free lens all rays from an axial object point pass through Oy,
the conjugate image point. In a plane, distance dz" from the true focal plane, the
image consists of a uniform circular patch of light of radius 82’ tana’, as shown in
figure 3. If we intrcduce polar co-ordinates p’ = J(u'2+v'%), ¢’ = tan? (u'[v)
B’(w’,v") is equal to a constant for p’ < p,, where

= ’ ’ 4 ’
Py = %(E(n‘ sina’) 8z’ tana’ = —Azwm secc'. (26)

1-0

B | |

0-§

0-6

0-4

D(s)

+0-2

0 0-5 10 - 1150 2 4 6 8 10
Wy, (Wavelengths)

Ficure 7. Response as a function of defect of focus. Full lines, according to
diffraction theory; broken lines, according to geometrical optics.

Since the response to a frequency pair (s,,?,) is the same as that for the single
frequency (s, 0) where s = /(s}+13), we may put ¢ = 0 in (25), and obtain

1 p; 2" s ’ s ’ r ’ r
D(s) =%L fo exp (—ip'ssin ') p’ dp'dy’,

the intensity in the image patch being taken equal to unity. This gives the formule

2J,(a) ( 47
a

Dis) = a =Ty | s |) , (1)

when normalized to make D(0) = 1. The use of a = 4m/Aw,,|s| implies tha
seca’ = 1, which is valid to the order of accuracy contemplated.

The first zero of (27) occurs when @ = 3-83, and this gives the limiting value of §
for which D(s) > 0. The bandwidth is therefore found from the formula
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Points calculated from this formula are shown in figure 6. From these results it
appears that (28) is near enough valid for wy,>2A. It should be remembered,
however, that this result applies only to the transmitted bandwidth, and not
necessarily to the response for all frequencies within the bandwidth.

It is often suggested that geometrical optics holds for large aberrations and large
defects of focus, and the above result supports this contention. What is more
important, however, is to study how far geometrical optics is valid for different
frequencies, irrespective of the magnitude of the aberration or defect of focus. To
this end the curves in figure 7 have been drawn. Each curve shows the variation of
D(s) with increasing defect of focus. The full lines correspond to calculations based
on diffraction theory, and the broken lines indicate what one would expect from
geometrical optics.

A striking conclusion at once emerges, namely that geometrical optics gives
results accurate to a small percentage for | s | <0-10, the maximum error reaching
only about 12 9%, for s = 0-20. For an F/5 objective s = 0-10, 0-20 correspond in
lines/mm to 20 and 40 respectively. This suggests that geometrical optics might be
near enough valid for the treatment of image defects in photographic lenses, even
though the aberrations are small, for resolution greater than s = 0:10 will not
often be in question.

4. A TOLERANCE FORMULA FOR DEFECT OF FOCUS

. Since the derivative of D(s) at s = 0 is equal to (—2/n), and is independent of
aberration and defect of focus, the first approximations to D(s), D(s) will be of
the form 9

Dyfs) = 1= | 8| +0(s"),

Dis) = 1-2 5| +0(s3).

and it is therefore in the coefficient of s that one first finds the influence of aberration
or defect of focus.

With this in mind (20) may be expanded to give
D2
D(s) = 1—§|3|—21w§032. (29)
The ratio of the response of the defocused system to that obtaining in the true focal
plane is the additional modulation arising from the defect of focus. Denoting this
factor by M(s), D(s)

=

22
1 whet, (30)
if quantities O(s®) are ignored. Let the acceptable defect of focus be such that the
Contrast does not fall below 809, of that in the true focal plane, that is M > 0-80.
Using now the formula (13) and (17), for w,, and s respectively, gives the tolerance

0-20

e et 31
& +R’sina” (31)
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with the notation used earlier. Measurements of the contrast in images in differen
planes of focus have been described by MacDonald (1951). The above expressiop
shows good agreement with these results. In each case the focal spread for which
M(s) > 0-80 is slightly greater than that indicated by the formula (30). This is iy
accordance with the known increased depth of focus in the presence of aberration,

It is significant that the tolerance on 4z’ according to (31) is independent of the
wavelength, the refractive index of the image space, and involves sin a’ rather thay
the square of this quantity. This is understandable if one recalls that the scale of
the point source diffraction image relative to the pattern size for a given R’ i
proportional to A/n’sina’.

Comparison of the values of D(s) calculated using the approximate formula (29)
with those obtained from the full expression (20), shows that the error in (29) doeg
not exceed 2 %, providing D(s) > 0-80. For the smaller values of 8, less than abou

0-2, the expression (30), and in consequence the tolerance formula, (31), is also valid
to the same order of accuracy.

5. RECTANGULAR APERTURES

The form of the image of a line structure parallel to one axis of a rectangular
aperture is of importance in the theory of the spectrograph. Let the angular width
of the side of the aperture perpendicular to the direction of the line structure be a,
as seen from the axial image point. Co-ordinates (z,y), (w',v’) are defined as in (1)
and (2) above. The rectangular aperture is then of half-width z = 1. Let Yy =1y,
be the half-length of the slit. The area of the aperture is then g(0,0) = 4y,, and in

place of (19), we write 1
D(s) = —-—f] exp (ias) dady,
4yl Js

the symbol s now denoting the area common to two rectangles with their centres
at the points ( + s, 0). The limits of z are thus + (1—%|s]), and those of y are +y,
The transmission function is therefore

D(s) = sin{a(lﬁ;—%[s D}

(Is|<2), 3
=0 (|s]>2),
which reduces to the known result for the in-focus image
D =1-ilsl tlal<2) A
=0 (|8]>2),

as wy— 0. Recalling that a = 47/Aw,, | s |, the defect of focus being now measured
along the line = + 1, the bandwidth is found from the value of s giving the first
zero of D(s) (32), that is as the appropriate root of the equation

A-Bp S L, (34
214,
or, for larger values of wy,, 8 = 0-25A[w,,, (39)

which, we shall see, is precisely the result obtained on the basis of geometrical
optics.
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The geometrical point-source image in a plane distance 8z’ from the true focal
plane comprises a uniformly illuminated rectangular patch of half-width

Uy = 47[Awyyseca’,

and half-length = 7,%;. The formula (25) now becomes

+u, +lhu;
D(s,0) = f I exp (—isu')du’,
—Uy J =Yty
apart from a normalizing factor to make D(0,0) = 1. According to geometrical
optics, therefore, the response function is

D(s) =sinaja, (36)

in which seca” has again been put equal to unity. The bandwidth is thus given by
(35). In this case it is easy to see how the transition to geometrical optics occurs
with increasing defect of focus. For, on the one hand, the appropriate root of (34)
becomes progressively less different from the value (35), and (32) behaves increas-
ingly like (36), the significant range of values of s being small. Moreover, if s < 0-10
(say) the transmission factor (32) does not differ from that calculated from (36)
by more than a small percentage. This confirms the result obtained numerically for
circular apertures, namely that geometrical optics can be expected to give results of
reasonable accuracy for structures for which s < 0-10.

The response function found above for a rectangular aperture is qualitatively
similar to that for a circular aperture. Moreover, being in closed form, it is a simple
matter to obtain numerical values. For these reasons numerical results have not
been given in the text,

Tam indebted to Miss J. M. Drewitt both for checking the analysis and for the
numerical computations.

REFERENCES

Duffieux, P. M. 1946 L’intégrale de Fourier et ses applications a l'optique. Bescangon:
privately printed.,

Hopkins, H. H. 1950 Wave theory of aberrations. Oxford: Clarendon Press.

Hopkins, H. H. 1953 Proc. Roy. Soc. A, 217, 408. '

MacD?na.ld, D. E. 1951 Symposium ‘Optical image evaluation’. U.S. Bureau of Standards,
Circular 526, 1954, p. 62.

Titchmarsh, E. C. 1937 Theory of Fourier integrals. Oxford University Press.



Notes by Rik Littlefield, rj.littlefield@computer.org, 6/27/2014:

1. The variable s is spatial frequency, in line pairs per unit length, scaled such that s = 2 is
cutoff based on the Airy disk.

2. To further make sense of Equation 31, it may be helpful to compare it to the standard
formula for quarter-lambda wavefront error. Then we have:

0-20
e e Sl 11
& tﬂ'sinm' (3L)
r_ A A . . . .
6z' = &+ NAZ T G (ignoring refractive index)

When are these two values equal?

020 _ . yl . y)
~ T2NA?2 T 2(sina’)?

“R'sina’

0.20 _ A
R'sina’ 2 (sina’)?

2sina’

R'=0.2
A

2 sinar

But n

is recognizable as the cutoff frequency.

So, one special point for Hopkins' formula occurs when we run at quarter-lambda
wavefront error and focus our attention on the frequency R' where D(s) = 0.80, roughly
out to 0.2 of the cutoff frequency for that lambda.

If we now consider what happens when lambda changes, we find that the MTF curve as a
whole sags by the change squared, but our position along that curve moves left (or right)
by 1/change, and because the effect of defocus is quadratic near s=0, everything cancels
out so that the loss of contrast does not depend on lambda.

Dependence on sin a' (instead of its square) and lack of dependence on lambda are also
characteristics of the ray optics model, so equation 31 is further substantiation of
Hopkins' viewpoint that ray optics is close enough for many purposes.

Paraphrasing, diffraction only matters when you're concerned with frequencies that are a
substantial fraction of cutoff.



